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Near-Critical NaCI-H20: An Equation of State 
and Discussion of Anomalous Properties 

Kenneth S. Pitzer 2 and John C. Tanger IV 2 

The system NaC1-H20 near the critical point of pure water shows not only the 
remarkable properties of any two-component system near the critical point of 
one component but also an anomalous curvature of the T-x and P-x  projec- 
tions of the critical line in the range below mole fraction 0.0005. An equation of 
state is presented which is based on the Haar Gallagher-Kell equation for pure 
water with a few terms involving the mole fraction of NaC1 together with the 
temperature and density. Parameters in this equation were selected which yield 
a good representation of the entire vapor-liquid coexistence surface from 250 to 
600~ and from the three-phase pressure to the critical pressure (or to the vapor 
pressure of pure water below its T0). Derivatives of this equation yield densities, 
enthalpies, and heat capacities which are compared with experimental data. 
Also, the properties calculated for the vapor near the three-phase line are 
compared with those predicted by the successive hydration model previously 
developed for NaC1 in steam in equilibrium with solid NaC1. Other related 
topics are discussed, including the anomalous features noted above. 

KEY WORDS: coexistence surface; critical region; mixtures (binary); sodium 
chloride; water. 

1. I N T R O D U C T I O N  

A two-component fluid shows some remarkable properties near the critical 
point of one component. The pertinent theory on a classical basis has been 
given by several investigators. Rozen [-1] found good agreement on this 
basis for the P - x  and T x  projections of the critical line for S F 6 - C O  2. For 
the very interesting and practically important system NaC1-HzO, however, 
the P - x  and T - x  critical lines show such rapid changes in slope near the 
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critical point of pure H20 that a quantitative treatment on a similar basis 
was frustrated [2]. It was then shown that such a quantitative treatment 
could be given if it was based on a "classical" critical point for pure water 
instead of the true critical point [3]. 

While pure H20 shows nonclassical behavior near its critical point 
with a coexistence curve consistent with a critical exponent fl ~ 0.325, a 
solution of NaC1 with as small a mole fraction as 0.0009 shows classical 
behavior with fl = �89 [4]. Thus, it appears that the long-range interparticle 
forces of the NaC1 suppress the extra, nonclassical fluctuation effects of 
pure H20. 

In brief reports recently published, a simple equation of state was 
proposed and applied [3] to phase-equilibrium data very close to the 
critical line and extending to 380~ [4]. We now present an improved 
equation which represents the entire vapor liquid equilibrium surface for 
NaC1-H20 from the three-phase pressure to the critical pressure and from 
below the critical temperature of water to 600~ (873 K). This equation is 
based on that of Haar et al [5] for pure H20 and connects to the true 
critical point of H20. The anomalous curvature of the critical line for 
NaC1 H20 arises from the nonclassical, near-critical properties of H20 as 
expressed in the Haar equation and their rapid disappearance in the 
solution. While other types of data were not used in fitting this equation, 
the pressure and temperature derivatives yield reasonably good values for 
other properties including the apparent molar heat capacity for conditions 
near the critical line. This paper includes a description of this equation and 
comparisons of calculated curves with certain measured properties, 
primarily in the region near the critical point of pure H20. In another 
paper, comparisons are presented for a wider range of temperature and for 
properties of geological interest [6]. 

2. SELECTION OF THE EQUATION OF STATE 

The basic concept of the equation is an expansion around the critical 
point of water. For the properties of pure water, however, we take the com- 
plete equation of Haar, Gallagher, and Ketl (HGK) [5], which is valid 
over a very wide range of pressure, volume, and temperature. The effect of 
NaC1 is expressed by a very small number of temperature-dependent terms 
in increasing powers of the amount of salt added and of the density dif- 
ference from the critical density of H20. It is convenient to take as a basis 
1 mol of H20 and y mol of NaC1; thus, y is the mole ratio and the mole 
fraction x=y/(l+y). We use the density of water in the system, 
p(H20)=p(so lu t ion) ( l -wt ,  fraction NaC1), and define the reduced 
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density d = p ( H 2 0 ) / p ~ ( H 2 0 ) ,  with p~(H20 ) the critical density of pure 
water. Then one writes for the pressure 

P=Pn2o(T ,  d ) + y [ b l o + b 1 1 ( d -  1)+ --. ] + y2[-b2o+ - . - ]  + --. (1) 

Here Pn~o is the pressure of pure H 2 0  calculated from the H G K  equation 
for T and d. 

Much of the literature [2] on two-component fluid properties close to 
the critical point of one component uses an expansion of the molar 
Helmholtz energy: 

a = a ~ + a~(6 V) + aCr(fT) + aCx + a~x(6 V)x + ... 

C 9 + a ~ r ( f V ) - ( 6 T ) / 2 + a ~ x ( 6 V ) Z x / 2 +  ... + R T x l n x  (2) 

where the subscripts indicate differentiation by that variable and the 
superscript c indicates evaluation at the critical point of the solvent. In 
these terms the initial slope of the two-component critical line is given by 

(dT /dx )~L  = [ (a~x)2/RT~ - a~x]/aC r (3) 

In terms of Eq. (1), blo is -aCx and bli is -aC~x/Pc(H20), while a~v r is 
given by differentiation of PH2o. Thus, the two terms in blo and btl are 
clearly required to express even the initial slope of the critical line. To our 
surprise, we were able to obtain quite good agreement with the vapor- 
liquid coexistence surface over a wide range of temperature and pressure 
with just the one additional term y2b2o shown explicitly in Eq. (1). Each of 
the bij quantities is temperature dependent, although their changes near 
Tc(H20) are small. 

The expression for the pressure can be integrated to yield the density- 
dependent terms of the Helmholtz energy; then density-independent terms 
are added. An ideal mixing term (on the undissociated basis) and a tem- 
perature-dependent term proportional to y are chosen for the latter, 
although a more complex function of T and y could have been selected. 
One then obtains 

A/nH2o = aH2o( T, d) + vc y[  -b in~d+ b~(ln d +  l/d).] - v~ y2b2o/d 

+ R T [ y  In y - (1 + y) ln(1 + y)]  + yg~ac~(T) (4) 

with v~ the critical volume of pure water. Here the basis is 1 mol of water 
and the ideal mixing term has been transformed from the familiar form in x 
to the corresponding form for the mole ratio y. The quantity g~acl(T) can 
be evaluated by comparison of the chemical potential of NaC1. 
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Addition of the PV term to Eq. (4) yields the Gibbs energy, when 
transformed to the basis of 1 mol of solution, it becomes 

G/(nH2o + nNaCI) =- (1 - -  X)gHzO( T, d) + RTEx In x + (1 - x) ln(1 - x)] 

+ xv~b11(1 + In d) + xg*acl(T) (5) 

One may now calculate the compositions of coexisting vapor and liquid 
phases by first calculating the density as a function of x (or y) at constant 
T and P from Eq. (1) (by iteration). Substitution of d into Eq. (5) then 
gives the molar Gibbs energy as a function of x, and the double tangent 
locates the equilibrium compositions. By trial and adjustment, values of 
b l0, b~l, and b20 were found which yielded reasonable agreement with the 
coexistence surface; this process is described more fully below. 

Other thermodynamic properties are obtained from appropriate 
derivatives; a few examples are 

H/nn2o = hH2o(T, d) + yv~E(T/d)(dblo/dT + ydb2o/dt) 

- T(db~/dT)(ln d+ 1/d) § b11(1 + In d)] + yh*acl(T ) (6) 

Cv/nH~o = cv.H20( T, d) + yv~( T/d) E (d2b ~o/dT 2) + y(d2b20/dT 2) 

- (dln d+ 1)(d2bll/dT2)] + yC*acl(T) (7) 

(OP/OT)~ = (OPH20/3T)d+ y[(db~o/dr) + ( d -  1)(dbll/dr)] 

+ y2(db2o/dT) (8) 

Apparent molar quantities can be calculated from the appropriate differ- 
ences; the apparent molar volume, for example, is 

~bv= (W S - VH20)/F/NaCI--~- (vc/y)(1/ds- 1/do) (9) 

In Eq. (9) the symbol ds refers to the reduced density of water in the 
solution, while the symbol d o refers to the reduced density of pure water at 
the pressure and temperature of the solution. The function c*(T) is related 
by the usual temperature derivative to g*(T). Various quantities can be 
combined to give other thermodynamic properties, including the heat 
capacity at constant pressure. 

Clearly, the b~0 and b~ terms arise from the hydration of NaC1, the b~0 
for water of critical density, and the bH term for the effect of change from 
critical density. At zero concentration, the NaC1 will be fully dissociated so 
that this should be the sum of the hydration effects for Na § and C1-. We 
know, however, from the conductance measurements of Quist and 
Marshall [-7] that NaC1 in critical H 2 0  is a weak electrolyte and that it is 
largely associated to ion pairs at the concentrations we consider. Thus, the 
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blo term actually represents the hydration effect of a distribution of ion 
pairs together with some separated Na +, C1- ions and the bll term gives 
the combined effect of a change in density of water on the hydration 
process and on the degree of association of the NaC1. The y2b2o term, 
which is included, becomes important only for quite concentrated liquids 
where various binary solute interactions will be present. 

3. EVALUATION OF PARAMETERS; THE VAPOR-LIQUID 
COEXISTENCE SURFACE 

The three parameters bin, b l l  , and b20 were first evaluated from the 
vapor-liquid coexistence curves at a series of temperatures from 250 to 
600~ (523-873 K). Figure 1 shows that the equation represents very well 
the remarkable changes from 373 to 440~ near the critical point of pure 
water [8-10].  Figures 2 and 3 show that good agreement is also obtained 
for the liquid phase down to 250~ [11-15]  and for both phases up to 
500~ [16-18].  At temperatures below 373~ the vapor (steam) phase 
contains very little NaC1 and the composition is difficult to measure. We 
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Fig. 1. The phase diagram for NaC1-H20 (a) at 373~ just below T~; (b) at 375.5~ 
just above T~; and (c) at 400, 420, and 440~ The curves are calculated from Eqs. (1) and 
(5), while the experimental values are from Bischoff et al. I-8], Olander and Liander [9] ,  
Khaibullin and Borisov [10],  Urusova and Ravich 1,11], and Parisod and Plattner 1-12]. 
One bar = 0.1 MPa. 
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Fig. 2, Liquid phase compositions in equilibrium with the 
vapor at below-critical temperatures. The curves are 
calculated from Eqs. (1) and (5). Experimental values are 
from Liu and Lindsay [13], Urusova and Ravich [11], 
Mashovets et al. [14], and Wood et al. [15]. 

accepted the measurements of Bischoff etal. [8]  for the vapor in 
equilibrium with solid and liquid and these are fitted accurately. 

In fitting parameters, primary emphasis was placed on the vapor and 
liquid compositions at the three-phase pressure (vapor+liquid+solid 
equilibrium) and on the critical pressure. Finally, temperature-dependent 
equations for each of the three parameters were fitted as follows: 
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Fig, 3. Vapor and liquid compositions along the coexistence 
curves for 450, 475, and 500~ The curves are calculated from 
Eqs. (I) and (5). Experimental values are from Olander and 
Liander [9], Urusova [16, 17], and Rosenbauer and Bischoff 
[183. 
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bl0 ----- -29,984.4 + 19.0285T+ 6.65541 x 1012/T 3 - 1.20069 x 1018/T 5 (10) 

bll = 3928.3 - 10.5947T- 6.0751 x 1038/T 13 (11) 

b2o = 14,121.9 - 27.0731T- 2.57142 x 1023/T 7 (12) 

The units are bars with T in K (1 bar = 0.1 MPa). Further details concern- 
ing this fitting procedure are given elsewhere [6]. 

4. OTHER PROPERTIES 

4.1. Heat Capacity 

Comparisons of heat capacities involve the initially unknown function 
C~ac l (T)  which appears in Eq. (7). In the range above 320~ a zero value 
of CNaC~* gave acceptable agreement with measurements of White et al. [21]. 
At lower temperatures, however, there were large discrepancies with data 
from references [19] and [20], which is not surprising since the 
calculations involve second derivatives of the empirical Eqs. (10)-(12) for 
the parameters bl0, b11, and b2o near the lower end of their range of 
validity. The following expression for CNaC~* gives good agreement: 

C*acl/R = --2.3 x 1046T -16 (13) 

with T in K. 
Figure 4 compares our caluclated curve for the apparent molar heat 

capacity of NaC1 at the very low molality 0.015 with very recent 
measurements of White et al. [21] at 321 bars. Our equation yields with 
remarkable accuracy the extremely large heat capacities, negative near 
395~ and positive near 415~ If our curve were shifted down in tem- 
perature by a few degrees, the agreement would be nearly perfect. The 
agreement shown in Fig. 4 gives some confirmation to our equation in the 
range above 350~ where there are, to our knowledge, no heat capacity 
measurements at higher molalities or different pressures. 

4.2. Chemical Potentials, Entropy, and Enthaipy 

The chemical potentials of H 2 0  and NaC1 and various thermal quan- 
tities involve either the function g*acl(T) or its temperature derivatives. We 
may now integrate Eq. (13) to obtain the following expressions for the 
entropy, enthalpy, and free energy: 

s*(T)/R = 1.47 • 1045T 16 + s~/R (14) 

[h*(r )  - H~ = 1.57 x 1045T 15 -b (ho* -- H~ (15) 

[g*(T) - 9 0 9 8  ] / R T  -~-. 1.0 X 1 0 4 4 T  - 16 ..11_ (ho  ~ _ H098  ) / R T -  sg /R (16) 
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Fig. 4. Apparent molar heat capacity of a 0.015 
molal solution at 321 bars. The vertical bars 
represent our estimated uncertainties for the 
experimental values of White et al. [2t];  the curve 
is calculated from the equations of lhis research. 
One kilocalorie = 4.184 kJ. 

Since there is no natural zero of enthalpy, the difference from a standard 
state value is shown. 

The two parameters in Eq.(16), (h~-H~98)/R and s~/R, can be 
evaluated by considering the equilibrium of aqueous NaC1 with solid NaC1 
over a range of temperature. This equilibrium is of geochemical interest 
and is discussed in detail elsewhere [6]. We report here just the values 
selected: (h*-H~ and s~/R= 10.0, where H~ is the 
enthalpy of solid NaC1 at 298 K and s* is a molar entropy on an absolute 
basis. Comparison was then made with enthalpies and entropies for 3.2 % 
NaC1 from Bischoff and Rosenbauer [22]; the agreement was good. 

In general, extrapolation of the present equation to zero-mole fraction 
NaC1 will not yield reliable properties for NaC1 in its standard state at 
infinite dilution. At low densities where the NaCI is largely ion paired, the 
extrapolated values will be approximately correct for the ion-paired stan- 
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dard state. But this equation includes no provision for dissociation; hence, 
it cannot yield valid results for the ionized standard state. This situation is 
considered more fully elsewhere [6].  

4.3. Vapor Near the Three-Phase Pressure 

The concentration of NaC1 is very low in the vapor at pressures near 
the three-phase line and temperatures below 400~ Experimental 
measurements are difficult and the reported values vary widely. We adop- 
ted the composition curve of Bischoff et al. 1-8] for the three-phase pressure 
as did Pitzer and Pabalan [23]  in developing an equation of a very dif- 
ferent type for NaC1 in steam in equilibrium with solid NaC1. Thus the two 
equations give the same composition at the three-phase pressure. It is of 
considerable interest to compare the predictions of the two equations at 
pressures below and above the three-phase pressure. This is shown in Fig. 5 
for 350~ The curve represents the calculated composition from the 
present equation above the three-phase pressure and from the Pitzer-  
Pabalan equation below that pressure. The X's  show the metastable 
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Fig. 5. Vapor composition in 
equilibrium with the solid below 
the three-phase pressure and in 
equilibrium with the liquid above 
that pressure. The curves are 
calculated, respectively, by the 
equation of Pitzer and Pabalan 
[233 and the present equation. 
The X's represent calculated 
metastable extensions of one 
equation into the pressure range of 
the other. 

840/9/5-2 
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extensions for each equation into the other pressure range. It is clear that 
the pressure dependencies of the two equations agree quite satisfactorily. 
Thus we believe that considerable confidence can be placed in the predic- 
tions of the present equation for the vapor composition in this range where 
experimental values are sparse and uncertain. 

5. VOLUMETRIC PROPERTIES AT NEAR-CRITICAL 
TEMPERATURES 

Figures 6 and 7 show the very interesting volumetric behavior of 
isotherms near the critical temperature. In Fig. 6 the dashed-dotted lines 
show the tie lines connecting vapor and liquid at equilibrium, while the 
dashed lines are tangent to the isotherms at their critical points and 
extrapolate at zero mole fraction to the partial molar volume of water. One 
notes that, for conditions along the critical line, this partial molar volume 
of H20 increases and finally diverges to plus infinity in the limit of zero 
NaC1. 

120 I I 

E 
ft.)" 

E 
o 
> 

I l O -  

I 0 0 -  

9 0 -  

8 0 -  

7 0 -  

6 0  

5 0 -  

40  
0 

373% 

374~ 

375.5~ 

- ~ 3 8 0 o c  

0.001 0 . 0 0 2  

x 2 

Fig. 6. Volumetric behavior of isotherms from 373 

to 380~ The dashed tangents at the critical com- 
positions extrapolate at x2 = 0 to the partial molar 
volume of H 2 0 .  The tie lines are dashed-dotted. 
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Fig. 7. The volumetric behavior over a very wide 
range of volume. The dashed portion of the curve is for 
equilibrium with supercooled liquid. 

Figure 7 shows the behavior over a wider range of volume. The near- 
critical isotherms show a maximum in the NaC1 fraction in the vapor  at 
volumes near 100 cm 3 .mol  1 and a minimum near the critical volume of 
pure U20 (56cm3 .mo l  1). Only a shoulder remains at 377.5~ and by 
380~ the V-x  curve has a simple shape. 

The NaCI content of steam drops to a very low level as the volume 
increases to the three-phase conditions (vapor+ l iqu id+ha l i t e ) .  At still 
larger volumes the vapor is essentially pure steam until the pressure 
approaches the vapor  pressure of pure NaC1, either supercooled liquid or 
solid. 

The present equation provides a basis for convenient calculation of 
other projections of volumetric properties and of enthalpies and other 
similar properties of the system NaC1 H20. Also, the general pattern of 
the behavior of near-critical N a C 1 - H 2 0  should be typical of systems with 
one nonvolatile component.  Thus, this equation can be used for qualitative 
or semiquantitative calculations for other similar systems. 
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6. BEHAVIOR VERY N E A R  THE CRITICAL P O I N T  OF WATER 

Before discussing the effect of very small amounts of NaC1, it is 
desirable to recognize certain aspects of the HGK equation for pure H20. 
Initially, Haar etal. [24] developed an equation fitting all properties 
everywhere except for a small region close to the critical Point. This can be 
taken as a "classical" equation of state for H20.  Then in 1984 they added a 
three-term function that is significant only very close to the critical point 
1-5]. While the complete equation does not have the correct limiting 
critical-exponential properties, it represents all experimental data for H 2 0  
quite accurately. Thus, from an empirical viewpoint, the three-term 
function of 1984 gives the effect of the near-critical, nonclassical fluc- 
tuations which lower the critical temperature from the 375.1~ of the 
1980 H G K  equation to 374.0~ the true value. 

We used both the "classical" (1980) equation and the complete (1984) 
equation in our calculations. Only at 375.5~ was there a significant dif- 
ference for the isothermal coexistence curve; this is shown on an expanded 
scale in Fig. 8. The uncertainties in pressure and temperature measurement; 
however, are larger than the difference between the two curves. Figure 9 
shows the calculated T - x  critical lines on the two bases. The classical 
calculation shows only a small curvature and a finite slope at x = 0, in 
agreement with Eq. (3). The curve based on the complete H G K  equation 
shows a large curvature in the region where the nonclassical fluctuation 
effect is important. Since a~v t is zero on the nonclassical basis, the slope is 
infinite in the limit at the critical point if the other quantities remain finite. 

In view of the experimental uncertainties and the simplicity of our 
Eq. (1), one should not overemphasize the details at the limit x ~ 0. 
Nevertheless, it seems clear that the anomalous curvature of the critical line 
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Fig. 8. Coexistence curves for 375.5~ The solid curve 
was calculated with the complete H G K  equation for H 2 0 ,  
while the dashed curve was calculated with the "classical" 
equation of Haar  et  al. [24]. 
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Fig. 9. The critical line for H 2 0  NaC1 near the 
critical point of pure water. The solid curve was 
calculated with the complete HGK equation for H20,  
while the dashed curve was calculated with the 
"classical" equation of Haar et al. [24]. 

near the critical point of pure water is associated with a rapid decrease in 
the additional, nonclassical fluctuation effect in pure H20 as a small 
concentration of ions is added. 

7. DISCUSSION 

Two different but related types of equations have been used to 
represent the near-critical properties of NaC1-H20 and related systems. 
The more detailed type considers the solvation energy, using the Born 
equation, and the ion-interaction effects. Each term depends strongly on 
the dielectric constant of water and this introduces striking effects near the 
critical point. But there are many approximations in the published editions 
of these theories and, as discussed by White et al. [21], only qualitative 
agreement has been attained. In the other type of theory, the effect of the 
solute is expressed by a simple adjustment of the properties of water. Wood 
and Quint [25] proposed a "corresponding-states" theory, i.e., that the 
properties of the solution are the same as those of water at the same 
reduced temperature and pressure. As noted by White etal. [21], this 
theory gives qualitatively correct results for the apparent molar heat 
capacity of 0.015 mol-kg -~ solution at 321 bars (Fig. 4), but the minimum 
near To is not deep enough and the following maximum is much too high. 
The present theory relates the properties of the solution to those of water 
at a shifted density but an unchanged temperature. For most properties 
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there are small additional terms proportional to the amount of NaC1 
present, but the striking near-critical effects arise from the density shift for 
the equation of state for H20.  The success of the present equation recom- 
mends it for use for similar systems including those with mixed solutes. 
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